The University of Texas at Austin
Robotics and Automation Society
Proudly Presents:

DoloRAS

IGVC 2013

Team Members:
Xihan Bian - Junior, EE

Joshua Bryant - Sophomore, EE
Chris Davis - Freshman, EE

Blake Garza - Junior, EE

Lucas Henderson - Senior, EE
Zichong Li - Junior, EE

Cruz Monrreal - Senior, EE

Robby Nevels - Senior, CS/CE
Manuel Philipose - Sophomore, EE
Andrew Surratt - Sophomore, ME
Sagar Alok Kumar Tewari - Senior, CS

Frank Weng - Senior, CE

—
==# CYPRESS

GoPFPro A [i’nteF)

Bea R0 (11 [I VECTORNAV

Embedded Navigation Solutions

| certify that the engineering design present in this vehicle is significant and equivalent to wor
that would satisfy the requirements of a senior design or graduate project course.

Signed,
, Dr. Jonathan Valvano, Faculty Advisor

OVERVIEW

The purpose of the following report is to provide an overview of DoloRAS, The University of
Texas at Austin IEEE Robotics and Automation Society’s (RAS) submission to the 2013
Intelligent Ground Vehicles Competition. During the past two semesters, we have designed, built,
and thoroughly tested our entry for this year’'s competition. In this report, we describe the
systems of DoloRAS, including the mechanical structure of the robot, the electrical and power
distribution system, embedded platforms, and software. We will conclude with a list of costs and

an analysis of our current performance.

DESIGN PHILOSOPHY AND PROCESS
Our approach to solve the IGVC problem was to break Visualize

‘autonomous navigation’ into smaller testable

Evaluate

challenges that could be tackled by smaller teams Data

Solution

comprised of experienced seniors and younger

members interested in helping with the challenge. For —
. . Run Tests .
each smaller task we followed an iterative process, Materials

Build New

because when designing hardware and software it is Parts

almost impossible to keep in mind every single

use-case and execution path. Hence, we made a conscientious effort to keep our system in
isolated layers of abstraction, allowing us to test multiple sensors and choose the ones that give

us the best results based on tests.

MECHANICAL SYSTEM AND SENSORS

Base

In deciding what to use as the base of our robot, we wanted to keep the chassis as simple as
possible. In the past, we have had difficulty with the robotic base when it was custom built, which
resulted in more time being allocated to get the hardware working before the software. Because
of this, we decided to find a chassis that would not only be already built, but was also cheap and

reliable.

We settled on using a Jet 3 Power wheelchair. This wheelchair was built to carry a 300 Ibs

person at a speed of five mph. It is sufficiently stable and robust to meet our requirements. The

2

wheelchair operates on a differential drive train, having two motors on either side. This means
that rotations are handled by turning the two motors at different speeds, allowing for a zero point
turn radius.

A few mechanical modifications were required to turn the wheelchair into a robotics platform.
First, we removed the chair portion and replaced it with a custom-built aluminum frame. Our
frame is designed to house our electronics, including the computer case, power supply,
sensors, and other components. Our frame also has a tall mast to mount our GPS receiver and
camera, which requires a tall viewing angle. It also has a convenient location to put the payload
directly over the driving wheels, as well as places to mount peripherals for testing, such as a

monitor, mouse, and keyboard.

Sensors

DoloRAS uses several sensors in order to localize and model the environment around it.

The camera we use is a Logitech Pro 9000 with a recording
resolution of 1600x1200. In addition to being cheap, it is easy to

interface with. However, it produces poor images when the robot

shakes or is in bright lighting conditions.

We use a Hokuyo UHG-L8X LIDAR sensor with a detectable range of .2
to .8 meters, scanning range of 270 degrees and .36 degree angular

resolution.

In addition, we use a VectorNav-Rugged 200 GPS/IMU. This module

allows for 2m GPS accuracy when in motion and 5 meter
accuracy at a stand still. The GPS receiver includes 50
channels. This module also has a gyroscope with a
measuring range of 2000 degrees per second at a bandwidth
of 256Hz, an accelerometer with a range of 8g and a
bandwidth of 256Hz, and a magnetometer with a range of 2.5
Gauss and a bandwidth of 200Hz.

Unfortunately, our Hokuyo LIDAR occasionally malfunctions and crashes multiple times on
startup. As a backup, we have also arranged an array of sonars for detection of physical
obstacles. These are 12 sonar sensors spread evenly over
180 degrees in the front of the robot that emulate the
functionality of a laser scan. They are less reliable however,

and occasionally interfere with each other due to cross talk.

POWER DISTRIBUTION
The first consideration in our power system is safety for both the machine and its operators. As
such, the first step in constructing a power distribution system is a way to shutdown the system
in case of accidental actions that can cause harm to anything around it or to the robot itself. This
kill switch system consists of a main relay which cuts power from two lead acids to the motor
controllers, a large red button which is easily visible and accessible, and a remote relay which
can turn the motors on and off from over 100 meters away. All components of the kill switch
system have a safety factor of at least 5 in terms of current draw. The output of the main relay
goes to the Victor motor controllers, which are full h-bridges capable of supporting 80A of
continuous current at 24V, with back-emf protection. Their outputs go directly into the motors

and are controlled by an PWM signal.

POWER
SOURCE

12 Volt

Inverter Monitor
Battery

Computer

Micro
Controller GPU&IMU J Camera Controller

Number 1 Number 2

Encoders Motor 24 Volt
Controllers Battery

Motors

Figure 1: Power distribution system

A separate power system, decoupled from the large current required to power the motors, is

powered by another single 12V lead acid battery. This lead acid plugs into an inverter which

4

outputs 120V AC power used by the monitor. The computer power supply goes into a power
multiplexer along with a connection to the lead acid battery. This allows for “hot-swapping” the
computer’s power between the wall and the on-board batteries. The multiplexer connects to a
DC to DC converter outputting generic computer power lines, which plug into the motherboard.
This power is also split up into a 12V and a 5V Anderson powerpole rail, which can be used to
power various peripherals requiring those voltages. The rest of the peripherals are powered by
the 5V USB power bus. We use Anderson Power Pole Connectors as a standardized plug for all

power connections throughout the robot.

EMBEDDED SYSTEM

Our primary embedded system is the PSoC 5 Development Kit donated by Cypress. The PSoC
5 is a Programmable System on Chip that has an Arm Cortex M3 hard processor and logic
blocks that can be configured through an interface provided by Cypress. Our decision to use the
PSoC was based on ease of use, since the PSoC not only has a powerful CPU, but is also

highly configurable and maintains a high level of flexibility without a steep learning curve.

The current function of the PSoC is to acquire and
process the raw data from the encoders and control the
motors. It does this while providing an abstraction to
control the motors by accepting linear and angular
velocity commands from the main computer. The

PSoC then attempts to move the robot at the provided
velocities using a proportional-integral-derivative (PID)

loop which matches the encoder inputs to the motor

outputs. While this is happening, the PSoC also
abstracts the encoder feedback with angular and linear velocity readings sent back to the main

computer.

The second embedded system on DoloRAS
is an Arduino Mega whose only purpose is to
receive sonar data and pipe it back to the
main computer. The PSoC was not used for

this because the serial connection from the

computer to the PSoC would reach a point of saturation. If we sent any more data, the serial
connection between the PSoC and the computer would crash. We needed an embedded
platform that had a lot of 10, but because we were short on time and did not have enough room
for another PSoC 5 Evaluation kit, we used an Arduino Mega that we had on hand. The Arduino’s
function is simply to control each sonar in the array and feed the data back to the main

computer.

Both the PSoC and Arduino communicate to the main computer using USB-UART with ASCII
characters. The choice of using ASCII over some form of encoded data is for easily human

readable communications (at the cost of bandwidth consumption).

SOFTWARE

The software running on DoloRAS is a result of several choices made throughout the course fo
the project, ranging from the basic platform and toolchain of development to use of third-party
libraries. Familiarity with each tool and programming language was an important part of our
decisions, however we did not shy away from learning new APlIs that fit our needs more closely

or were strongly recommended by experienced developers.

Toolchain

Early on, we chose to use the Robot Operating System (ROS), an open-source, meta-operating
system that runs on top of Ubuntu 12.04. ROS provides useful hardware abstractions and
primitives for passing messages, allowing for simple interprocess communication. Processes in
ROS are encapsulated by nodes which share information using ROS messages. ROS achieves
interprocess communication by allowing node to publish and subscribe to messages from
topics. ROS also provides us with the ability to create ROS services, which wait for requests
from client nodes and respond with messages. Finally, ROS has several debugging tools that
help us to monitor system performance and store all messages passed in an execution in the
form of ‘rosbags’, allowing us to collect data from sample runs and then test code without having

to physically move our robot for testing.

Third-Party Libraries
Another main advantage of using ROS is the availability of third-party libraries, such as drivers

for our camera and laser range finder as well as rosbridge, a package that allowed ROS

6

messages to be accessible over the internet. rosbridge and mjpeg_server enabled us to set up
a debugging platform to visualize the data we were receiving from our sensors remotely with

very low latency.

However, we tried to stay away from libraries that did too much “magic,” such as the ROS
navigation and mapping stack. Instead, we prefered to develop our own method for navigation

because we were able to understand and configure it much easier.

Programming Languages

ROS offers full support for Python, C++ and Lisp in the form of client libraries. We primarily used
C++ and Python for the main system, along with extensive use of JavaScript to prototype
methods of obstacle avoidance and localization. rosbridge provided us with an API to publish and
subscribe to ROS topics remotely, giving us the flexibility to use JavaScript running on a
separate client machine if case we ran into problems with high loads. We chose to use Open
Source Computer Vision (OpenCV) as it provided support for C++ and Python and was well
integrated in ROS, with features to avoid creating redundant copies of image messages, and
compressing in-transit messages. OpenCV is an open-source project maintained by Willow
Garage that has been used successfully in robotics competitions in the past, most notably on
Stanely, the winning entry of the DARPA Grand Challenge Vehicle. In addition, OpenCV has a
thorough GPU port using CUDA, which we used to offload our vision processing algorithms and
free up the CPU.

Drivers

While we used the drivers for our webcam and Hokuyo laser range finder found in third-party
ROS packages, we also spent a substantial amount of time writing drivers for other sensors we
used and tested with. We wrote drivers for the Pololu UM6 IMU, U-blox 6 GPS, and VN-200 IMU
which provide GPS and IMU data. We ultimately chose to use the VN-200 IMU from Vector-Nav
due to its precision and accuracy. Apart from these sensor drivers we also wrote code to
interface and drive the PSoC and Arduino microcontrollers to obtain data from encoders and

sonar, and to provide an abstraction for low level control of the motors.

Vision Pipeline

We chose to use OpenCV in Python to develop quick prototypes to tackle the various challenges

7

with vision, i.e. obstacle detection, lane detection, homography perspective transform and polar
transforms to estimate distances using images. Because we are using an Atom processor, we
had to be very cautious of our CPU usage and when possible used the GPU to relieve load. With
this in mind, we used cv_bridge, a ROS package to compress images and minimize copying
during interprocess communication. Our vision pipeline consists of separate nodes for detection
of obstacles and lanes, since the processing steps for each varied enough to justify the creation

of separate nodes.

Thresholding for Obstacle Detection

The node for obstacle detection throttles the number of frames outputted by the camera,
processing only the latest image available. This was a design choice to allow us to easily test
how far we can cut back on frequency of publishing processed image messages without

significantly affecting out higher level decision making process.

For colored obstacle detection we first blur the image we receive from the camera, and
translated the blurred Red-Green-Blue (RGB) image into Hue-Saturation-Value (HSV) color
space and split the channels in this image to threshold their values individually. The HSV color
space provides us with a natural visualization and allows us to succinctly and accurately

describe what it mean for an obstacle to be a certain color by using static thresholds.

White Line Detection Using Hough Transform

We chose a two step process to detect white lanes. Our overarching idea was to first identify
pixels that could potentially be a part of a white line and produce a binary image with this pixels
marked as white and the rest of the image, black. Next we used OpenCV’s Hough transform to
mark the best fit line on the binary image produced by the previous step. We created a Ul in

order to vary these thresholds with ease and adapt to lighting conditions with ease.

Homography and Polar Transform
Once a binary image is generated containing lanes and obstacles to be avoided, it must be

converted into a format that is usable to the high-level decision making software. We decided to
convert all environment-sensing data into a scan format. This requires a homography
perspective transform in order to transform the image to a bird’s-eye view. We use a

chessboard as seen in figure 2 below to automatically determine the homography transform

using OpenCV function calls. Notice how the chessboard in the transformed image appears to

be made from square tiles whereas the original image contain rhombi.

Figure 2: Perspective/homography transform

Then, the binary image is converted into polar space using OpenCV’s log-polar transform
function, shown in the right panel of figure 3 below. In this new image, rows represent angles and
columns represent distances. The image is scanned to produce a series of 20 (angle, distance)
pairs spanning 180 degrees in front the robot. Use of this scan is described the Obstacle

Avoidance section below.

Figure 3: middle: detecting lanes using hough lines, right: log-polar transform on binary image

Localization using an Extended Kalman Filter
DoloRAS uses an Extended Kalman Filter in order to determine its location in the world. A
Kalman filter is a linear estimator that uses updates from various sensors and confidence levels

in each sensor to produce a state estimation vector. It uses a linear transition of robot’s state

9

from one prediction to the next, while at the same time maintaining a matrix of variances, or
confidences, corresponding to each element in the state vector. This state state estimation
process is robust because it can tolerate errors or even failures in a set of sensors and still
provide a reasonable state and error estimation. An Extended Kalman Filter (EKF) approximates
a nonlinear state transition function, which is more suited for a differential drive robot like

DoloRAS. For more information on Kalman filters and EKFs, see [1].

Rather than using an existing implementation, we decided to write our own EKF to have flexibility
on how state estimates are computed and updates are used. Our EKF estimates a state vector
that consists of position (in meters), heading, linear and angular velocity, linear acceleration, roll,
and pitch. We used the VN 200’s GPS sensor for global position updates (using x/y meter
updates computed from GPS coordinates using a local reference point), the VN 200’s
accelerometer and magnetometer for roll/pitch/yaw updates, and the motor’s encoders for
angular and linear velocity updates. We calculated sensor uncertainties from the GPS and IMU
by analyzing data while DoloRAS was at rest, and estimated the encoders’ uncertainty from
observing how much drift occurred when calculating the robot’s position directly from the

encoder values.

Once the EKF was completed, we found that there was very little drift while using only the
encoders (approximately 1 meter for every 20 meters travelled), unless slippage occured on
grass, which could be somewhat compensated for when using directional updates from the IMU.
With everything combined, we are able to achieve a smooth path estimation which has has an
overall approximate standard deviation of error under 2 meters. This is significantly smoother

than using GPS updates exclusively, as seen in the diagrams below.

10

Figure 4: The EKF is tested on an outdoor soccer field. Right: GPS updates; left: EKF estimate

using combined encoders, IMU, and GPS updates. The boxes on the right are 4 by 4 meters.

Obstacle Avoidance and Decision-Making

In order to use data provided by sensor in the decision-making process, we first convert the data
provided by each sensor into a scan format, making it simple to combine scans and abstract
details of the sensors from the decision-making code. For this, we used the Hokuyo UHG LIDAR
scanner, a custom-built array of sonars, and a webcam. Creating scan data from the Hokuyo
and sonar array is trivial, but creating a scan from the camera data requires the vision pipeline
described in the vision section above. An scan can easily be generated once the log-polar
transformed binary image is published. An example of this can be seen in figure 5 below. This is

a continuation of figure 3 in the vision pipeline section.

Figure 5: showing an image scan derived from the same image as Figure 3 above

11

Once a combined scan is created, we use a modified version of the Dynamic Window (DW)
technique described in [2] which takes in the current goal point and the state estimation output
from the EKF. Although this is a purely reactive technique, we believe that it will be sufficient for
navigation at the IGVC. During the competition, we will likely add extra waypoints inbetween the

given ones to allow the robot to move smoothly through the field.

Our DW approach samples angular and linear velocities in a window around the current
estimate of the robot’s angular and linear velocities (hence dynamic in the name). Each sample
(linear v, angular w) is weighted using four criteria, and the best is chosen to be sent to the
PSoC driver, and on to the motors. Figure 6 shows an example of the angular and linear velocity

sample trajectory space.

Figure 6: An example of the angular and linear trajectories calculated with the robot at rest,

facing towards the positive x-axis. Each axis show ticks every meter.

We used the following criteria to weigh samples:
e Maximizing linear velocity
e Minimizing the difference between the direction to the goal and the heading in the
trajectory after a time step
e Maximizing clearance, the distance that the robot can follow a trajectory before hitting an
obstacle. See the figure 7 below.

e Minimizing goal alignment distance, the minimum distance to the goal from any point on

12

the trajectory. See the diagram below. This weight was added from the original DW
technique in [2] because it helps prevent the robot from swerving back and forth when

heading towards a goal.

oal alignment score for B

goal alignment
score for A

Figure 7: Right: A, B, and C are the clearance distances calculated for each trajectory. Left: the

goal alignment values are shown for each arc A and B.

We originally implemented the DW code in Python, but decided to switch to Javascript in order
to speed up prototyping and visual inspection of the process. We use rosbridge to transfer data
and commands to and from a browser. This also allows us to easily connect a much faster
computer to our current one and offload the decision making computation (the extra computer
only needs a browser and an ethernet connection to the main computer in order to run the
program). We have currently measured the upper bound of the data latency between the main

and extra computer to be approximately 150 ms.

PERFORMANCE

We have observed our robot travelling to multiple GPS waypoints while avoiding obstacles and
using all sensors to localize. The robot performs poorly in cluttered environments, occasionally
ignoring small obstacles. This is due to the noise in scans that are produced from the vision
processing nodes as well as the latency in the system. After migrating the software to a faster i5

processor, we expect that this problem will lessen.

13

We have benchmarked performance gains when moving our image processing algorithms from

the CPU to the GPU. See the results of a case study of doing Canny edge detection in figure 8.

» S@ o -

le8

10}

+1 934e

l‘le 8

+1.934e3

Figure 8: Graphs of CPU vs. GPU usage while running Canny Edge Detection

14

COST

ltem Quantity MSRP (USD) | Cost (USD)
Jet 3 Power Wheelchair 1 $1500 $40
Hokuyo UHG-08LX LIDAR 1 $3950 $0
U1 12V 35Ah Lead-Acid Battery 2 $160 $160
1” Aluminum Angle Brackets, %" thick 10 $80 $80
ZOTAC D2550-ITX WiFi Supreme 1 $163 $0
Cypress CY8CKIT-050 Programmable SoC 1 $100 $0
Intel Atom Processor, 1.86GHz 1 $95 $0
M4-ATX DC-DC 250w PSU 1 $90 $0
Logitech QuickCam Pro 9000 1 $90 $0
Ublox AEK-4H GPS Evaluation Kit 1 $200 $0
Anderson Power Pole Connectors 50 $60 $60
Misc. Hardware (Nuts and Bolts) NA $100 $100
Quadro 6000 1 $3,999 $0
Hero3 Black Edition 1 $399 $0
VN 200 Rugged 1 $3200 $0
StarTech PCle HD Video Capture Card 1 $120 $120
2 Channel Remote RF Relay 1 $30 $30
IFI VEX Pro Victor 885 2 $400 $400
HC-SR04 Sonar 12 $36 $36
Total: $14,186 $703

15

REFERENCES
[1] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. Cambridge, MA:

MIT, 2005. Print.

[2] Fox, D.; Burgard, W.; Thrun, S., "The dynamic window approach to collision avoidance,"
Robotics & Automation Magazine, IEEE , vol.4, no.1, pp.23,33, Mar 1997

16

